Progress and future perspective of SACLA

Toru Hara

RIKEN SPring-8 center, Japan

toru@spring8.or.jp

SACLA (SPring-8 Angstrom Compact free-electron LAser) started its operation in 2011 as the second XFEL facility after LCLS [1]. The SACLA facility covers a wide spectral range from soft x-ray to hard x-ray and provides a unique light source, such as a two-color XFEL, to user experiments. The undulator hall of SACLA can accommodate up to five undulator beamlines and three of them, BL1 \sim 3, have been installed so far. BL1 is a soft x-ray FEL beamline from 20 to 150 eV driven by a dedicated 800 MeV linac, which is the former SCSS accelerator [2]. BL2 and BL3 are XFEL beamlines ranging from 4 to 15 keV. These three beamlines are operated in parallel to meet the increasing demands for XFEL user experiments [3].

The electron beam energy of the SACLA main linac is changed between 6 and 8 GeV according to the XFEL photon energy. The typical laser pulse output is $500 \sim 700$ uJ at 10 keV with a pulse duration of sub 10 fs (FWHM). Since SACLA employs variable gap in-vacuum undulators with 18 mm period, simultaneous lasing at two different wavelengths is possible with an adjustable temporal separation of $0 \sim 200$ fs [4]. This two-color XFEL operation offers an ideal light source for x-ray pump x-ray probe experiments.

In the parallel operation, a kicker magnet switches the two XFEL beamlines from pulse to pulse to share the 60 Hz electron beam of the SACLA main linac. In addition to undulator K-values, the beam energies and lengths of the electron bunches are independently adjusted for each beamline to ensure wide spectral tunability and obtain optimum laser performance [5].

In future, SACLA is planned to be used as a low-emittance injector of the upgraded SPring-8. The beam injection test will start in September 2018 using the present SPring-8. For the topping-up operation, one electron bunch is sent to the SPring-8 storage ring every few seconds upon request, while keeping the XFEL operation.

In this talk, current status and future perspective of SACLA will be presented.

References

- [1] T. Ishikawa et al., Nature Photon. 6, 540 (2012).
- [2] S. Owada et al., J. Synchrotron Radiat. 25, 282 (2018).
- [3] T. Hara et al., Phys. Rev. Accel. Beams 19, 020703 (2016).
- [4] T. Hara et al., Nat. Commun. Accel. 4, 3919 (2013).
- [5] T. Hara et al., Phys. Rev. ST Accel. Beams 16, 080701 (2013).