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Soft-X-ray ARPES (SX-ARPES) in the energy range around 1 keV benefits from enhanced pho-
toelectron escape depth, sharp definition of 3D electron momentum k, and resonant photoexcitation
delivering elemental and chemical state specificity. The main challenge of this technique is a drop of the
valence band cross-section by 2-3 orders of magnitude which has to be compensated by high flux of in-
cident X-ray radiation. SX-ARPES instrumentation at Swiss Light Source [1] is hosted by the ADRESS
beamline delivering soft X-rays in the energy range from 300 to 1600 eV with resolving power E/DE
up to 30K. Photon flux above 1013 photons/s/0.01%BW combined with optimized endstation geometry
overpowers the cross-section problem and allows stretching SX-ARPES to the most photon-hungry cases
of buried impurities and heterostructures.

We illustrate applications of SX-ARPES to bulk materials with the perovskite La1−xSrxMnO3 where
SX-ARPES resolves full 3D topology of its Fermi surface connected with the magnetoresistance [2].
Other cases include charge-density waves in VSe2 originating from 3D nesting of its Fermi surface [3],
Weil semimetals, etc. Applications to buried semiconductor interfaces are illustrated by AlGaN/GaN
high electron mobility transistor (HEMT) heterostructures where SX-ARPES resolves Fermi surface,
band dispersions and Fourier composition of the interfacial quantum well states [4]. A ”drosophila” of
buried oxide interfaces is LaAlO3/SrTiO3. Resonant photoexcitation at the Ti L-edge resolves the inter-
face quantum well subbands, whose peak-dip-hump spectral function manifests a multiphonon polaronic
nature of the interface charge carriers fundamentally limiting their mobility [5]. Further cases are mul-
tiferroic BaTiO3/La1−xSrxMnO3 interfaces, EuO/Si spin injectors, etc. An example of impurity systems
is the magnetic semiconductor GaMnAs, where resonant Mn L-edge photoexcitation identifies the fer-
romagnetic Mn impurity band as well as its hybridization with the host GaAs bands [6]. Other cases
include magnetic V impurities in the topological Bi3Se2 competing with the quantum anomalous Hall
effect [7], Mn impurities in the ferroelectric Rashba semiconductor GeTe [8], etc. These examples unfold
the spectroscopic potential of SX-ARPES in application to the heterostructure and impurity systems in
the heart of the present and future electronic and spintronic devices.
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