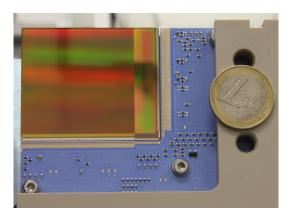
Percival: a soft x-ray Imager for Synchrotron Rings and Free Electron Lasers


<u>Alessandro Marras</u>^{*1}, C.B. Wunderer¹, J. Correa¹, B. Boitrelle⁶, P. Göttlicher¹, M. Kuhn¹, F. Krivan¹, S. Lange¹, I. Shevyakov¹, M. Zimmer¹, N. Guerrini², B. Marsh², I. Sedgwick², G. Cautero³, D. Giuressi³, A. Khromova³, R. Menk³, G. Pinaroli³, L. Stebel³, A. Greer⁴, T. Nicholls², U. Pedersen⁴, N. Tartoni⁴, H.J. Hyun⁵, K.S. Kim⁵, S.Y. Rah⁵, and H. Graafsma¹

¹Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
²Science & Technology Faculties (STFC), Didcot, U.K.
³ELETTRA Sincrotrone Trieste, Trieste, Italy
⁴Diamond Light Source (DLS), Didcot, U.K.
⁵Pohang Accelerator Lab (PAL), Pohang, South Korea
⁶Synchrotron SOLEIL, Saint Aubin, France
^{*}alessandro.marras@desy.de

Percival is a soft-X-ray detector for Photon Science applications at Synchrotron Rings and Free-Electron Lasers, developed as a collaboration between DESY, STFC, ELETTRA, DLS and PAL. It is aimed at direct x-ray detection in the 250-1000eV energy range (extended range from <100eV to >2 keV). The "P2M" system features a large imaging area (\sim 4×4 cm², \sim 2 Mpixels of 27 μ m) without dead zones. Its core is a Monolithic Active Pixel Sensor (MAPS) array, manufactured in a commercial 180 nm CMOS technology on a high-resisitivity epitaxial layer. In its soft-x-ray version, the MAPS is back-thinned and Back-Side-Illuminated (BSI); back-side entrance window is minimized.

In-pixel circuitry is used to extend dynamic range, modulating the pixel gain according to the impinging photon flux (lateral overflow). The signal collected is digitized on-chip to 12(+3) bits and streamed out up to 300 frame/s. The MAPS is wire-bonded to a ceramic (LTCC) board; bias, monitoring and (reconfigurable) addressing are provided by ad-hoc developed boards. To cope with the considerable data rate (~20 Gbit/sec), its outputs are passed to a data-concentrator board and streamed out through parallel 10Gb ethernet links to multiple nodes, through a buffer switch. A HDF5 Virtual Dataset architecture has been decided for the data storage, to access images as a single data archive.

The Full 2M-pixel system in its Front-Side-Illuminated version (Figure) has been produced: preliminary tests show the expected functionality, and the first images (using visible light) have been taken. The lateral-overflow dynamic range extension (\sim 50000 photons of 250 eV), low-flux noise (\sim 15e), thin entrance window (response to low-energy photons down to 92 eV), and single-shot operation capability were demonstrated on reduced-sized prototypes. The full 2M-pixel system in its BSI variant is being post-processed, and is estimated to be back-thinned \sim April 2018.

the P2M imager