Single-shot femtosecond x-ray streaking method with soft x-ray FEL pulses

<u>Mikako Makita</u>^{*1,2}, Michele Buzzi¹, Emmanuelle Jal³, Jörg Raabe¹, Boris Vodungbo³, Nicolas Jaouen⁴, Armin Kleibert¹, Flavio Capotondi⁵, Xuan Liu³, Emanuele Pedersoli⁵, Harald Redlin⁶, Benedikt Rösner¹, Tatiana Savchenko¹, Nora Schirmel⁶, Kai Tiedtke⁶, Frithjof Nolting¹, Jan Lüning³, and Christian David¹

¹Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
²European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
³Sorbonne Universities, UPMC Univ Paris 06, LCPMR, 75005 Paris, France
⁴Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
⁵DiProl@FERMI, Elettra-Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
⁶Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
* mikako.makita@xfel.eu

We have developed and demonstrated a soft x-ray streaking method. This setup based on a transmission grating allows for recording the full dynamics of transient phenomena, with femtoseconds time resolution, using a single x-ray FEL pulse. The method circumvents the intrinsic problems with the conventional repetitive pump-probe method, which requires multiple pump-probe cycles at different delays in order to reconstruct the full pump-induced dynamics. Instead, the demonstrated concept is characterised by alignment simplicity and achieves a high time resolution, not affected by timing jitter between probe and pump beams. The length of the time window of the continuous probing is defined by the grating and the x-ray wavelength. We have demonstrated our method in two geometries at two FEL facilities – FLASH, Hamburg [1], and FERMI, Trieste (Figure) – by looking at the ultrafast demagnetization of ferromagnetic thin films induced by an infrared pump pulse. In these cases, the accessible probing time window was 1.57 ps at an x-ray energy of 60 eV. Further possible choices and combination of the x-ray energy range, achievable probing time window, and grating materials will be discussed.

Schematic diagram of the setup concept. At FLASH the reflected probe x-ray was recorded. At FERMI, the transmitted signal was collected downstream of the sample. In both cases, the time information is encoded in spatial coordinates in the recorded images.

References

M. Buzzi, M. Makita, L. Howald, A. Kleibert, B. Vodungbo, P. Maldonado, J. Raabe, N. Jaouen, H. Redlin, K. Tiedtke, P. M. Oppeneer, C. David, F. Nolting, and J. Lüning, Sci. Rep. 7, (2017)