Large solid angle and high detection efficiency multi-element silicon drift detectors for synchrotron based X-ray spectroscopy

Jernej Bufon^{*}^{1,5}, Matteo Altissimo¹, Giuliana Aquilanti¹, Pierluigi Bellutti², Giuseppe Bertuccio^{3,4}, Fulvio Billè¹, Roberto Borghes¹, Giacomo Borghi², Giuseppe Cautero^{1,5}, Stefano Ciano⁵, Andres Cicuttin^{5,6}, Daniela Cirrincione^{5,7}, Maria Liz Crespo^{5,6}, Sergio Fabiani^{8,9}, Francesco Ficorella², Massimo Gandola^{3,4}, Alessandra Gianoncelli^{1,5}, Dario Giuressi^{1,5}, Riccardo Grisonich¹, George Kourousias¹, Kasun Sameera Mannatunga^{6,10}, Filippo Mele^{3,4}, Ralf Hendrik Menk^{1,5,11}, Luca Olivi^{1,5}, Giulio Orzan⁵, Antonio Picciotto², Alexandre Rachevski⁵, Irina Rashevskaya¹², Martina Sammartini^{3,4}, Stefano Schillani^{1,5}, Andrea Stolfa¹, Gianluigi Zampa⁵, Nicola Zampa⁵, Nicola Zorzi², and Andrea Vacchi^{5,7}

¹Elettra - Sincrotrone Trieste S.C.p.A., Italy
²Fondazione Bruno Kessler, Italy
³Politecnico di Milano, Italy
⁴INFN Milano, Italy
⁵INFN Trieste, Italy
⁶ICTP, Italy
⁷Università di Udine, Italy
⁸INAF-IAPS, Italy
⁹INFN Roma Tor Vergata, Italy
¹⁰University of Sri Jayewardenepura, Sri Lanka
¹¹University of Saskatchewan, Canada
¹²TIFPA - INFN, Italy
^{*}jernej.bufon@elettra.eu

Third and fourth generation light sources have revolutionized the research in many scientific and technological disciplines. New scientific challenges impose the construction of cutting-edge performance machines and experimental stations. In this context, off-the-shelf detection systems severely constrain the achievable results. These reasons led to the birth of the ReDSoX and ReDSoX2 research projects, aiming to explore new solutions related to energy resolving imagers based on silicon drift detectors (SDD), which are among the most employed acquisition devices in X-ray fluorescence spectroscopy. The main goal of the project is to develop novel detection systems able to cover a large photoemission solid angle, being easily adaptable to the needs of different X-ray spectroscopy beamlines and ready to cope with high photon count-rates in order to exploit all the power of new light sources. Research efforts yielded two detector systems, dedicated to different experimental needs. The first system, which is composed of 32 SDD elements arranged on 4 monolithic sensors and covers a total non-collimated area of 1232 mm², is optimized for detecting low-energy photons in the 200 - 4000 eV energy range. The second detector consists of a matrix of 64 SDD elements disposed on 8 monolithic arrays covering an overall non-collimated active area of 576 mm². The latter operates in an energy range between 4 and 30 keV. Both systems are highly integrated and can either be operated as an apparent large area "single detector" or as a multi-element detector, collecting information separately from each single element in order to enable spatially and angular resolved advanced studies. The performances of the two detector systems have been studied at the TwinMic and XAFS beamlines (Elettra – Sincrotrone Trieste, Italy), respectively. Recent results obtained during these measurements will be presented and discussed.